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Nonorthogonal tight-binding model for germanium

N. Bernstein, M. J. Mehl, and D. A. Papaconstantopoulos
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We present a pair of nonorthogonal tight-binding~TB! models for germanium within the NRL-TB approach.
One uses ansp3 basis, and is optimized for total-energy calculations by fitting to the total energy and band
structures of several high-symmetry lattice structures. The other uses ansp3d5 basis to accurately reproduce
the diamond lattice band structure, including three conduction bands. We present tests of thesp3 TB model on
bulk properties, including high-symmetry lattice structure energies and volumes and the diamond lattice elastic
constants, phonons, and band structure. We also present results for point defect formation and relaxation
energies and low index surface energies and stresses, many of which have not been calculated using the
density-functional theory~DFT!, as well as some medium size clusters. Taking advantage of the computational
efficiency of the TB approach, we go beyond the capabilities of standard density-functional theory, combining
it with molecular dynamics to simulate finite temperature properties of Ge. We get good agreement with
experiment for the atomic mean-squared displacement and the melting point approximated using the Linde-
mann criterion, as well as the linear thermal-expansion coefficient. In another demonstration of the efficiency
of the TB approach, we present results for the structure and electronic properties of a high angle twist grain
boundary~GB!. In agreement with DFT simulation we see a range of structures with comparable energies, all
with electronic states deep in the band gap. In contrast to previous work we find some different geometries with
perfect fourfold coordination of all atoms in the GB. Despite the perfect coordination, these structures also
have deep electronic states in the gap, indicating that the GB will be electrically active.

DOI: 10.1103/PhysRevB.66.075212 PACS number~s!: 71.15.Nc, 71.15.Pd, 71.20.Mq, 61.72.Mm
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I. INTRODUCTION

The tight-binding~TB! approach to total-energy calcula
tion is one of the simplest methods that explicitly treats
quantum-mechanical nature of electrons that form in
atomic bonds. It is much faster than the first-principles
proaches, while keeping enough of the essential physic
be more reliable than the empirical interatomic potentia
TB methods have been developed for a wide range of m
rials, from metals to semiconductors.1 While most of the
work on models for semiconductors has concentrated on
con and carbon, there has been less development of TB t
energy models for germanium.2–6 There are a number o
models that focus entirely on the band structure,7–10and sev-
eral aimed at the energetics of small clusters. Thus far th
has been relatively little emphasis, both in the fitting data a
the published results, on bulk energetics beyond a few sim
tests of high-symmetry bulk phases and phonon frequenc
In this work we present a pair of nonorthogonal TB mod
for Ge using the formalism of the NRL-TB method.11,12The
first model uses ansp3 basis, and is optimized for total
energy calculations. All of the results we present that requ
total energy or atomic force or stress calculations are d
using this TB model. We present tests of this model on b
phase energetics, elastic and vibrational properties, point
fects energies and structures, low index surface proper
and cluster energies and structures. We have tested th
fects of charge self-consistency~CSC! on this model using a
method based on a recent formulation for including CSC
the TB approach.13 While we find no significant changes t
any of the bulk or point defect results, the surface proper
are modified considerably. The second model uses ansp3d5

basis that is needed to accurately represent the band stru
0163-1829/2002/66~7!/075212~12!/$20.00 66 0752
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to which it is fitted, including the valence bands and t
lowest few conduction bands. While this model could also
used for total-energy calculations, doing so would be mu
more computationally expensive than with thesp3 basis
model, and the energies, which depend only on occup
orbitals with little d character, would not be significantl
improved. Therefore for thesp3d5 basis model we only
present the band structure, and only band structure rel
results are computed using this model.

The TB formulation uses parametrized relations to d
scribe the electronic Hamiltonian and overlap matrices.
the NRL-TB formulation used for this TB model, the param
eters are determined by fitting a combination of band str
tures and energies to first-principles calculations. The
approach is more computationally economical than fir
principles approaches both because it uses a much sm
basis and because it makes various approximations as to
nature of the Hamiltonian matrix that characterizes the e
trons. In addition, because the TB approach uses local
orbitals, it is also more amenable for use with linear-scal
methods for computing energies and forces than typical fi
principles methods. While it is much faster than firs
principles approaches, the TB method is still significan
more computationally demanding than methods using e
pirical interatomic potentials. However, it is more reliab
than the non-quantum-mechanical methods, especially
from equilibrium or far from the geometries that were us
in the fit. In addition, it is easier to include electron CS
effects in TB methods, and unlike any method that does
explicitly treat the electrons, TB methods can provide el
tronic structure information as well as total energies a
forces.

In Sec. II we discuss the functional form of the expre
©2002 The American Physical Society12-1
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sions that contribute to the model, and the database of fi
principles calculations used in the fit. In Secs. III, IV, V, an
VI we present zero-temperature results for bulk, point def
surface properties, and clusters, respectively, and in Sec
we present results for some finite temperature properties
discuss results of our application of these models to
structural and electronic properties of a high angle tw
grain boundary in Sec. VIII, and in the final section we gi
some concluding remarks.

II. FUNCTIONAL FORM AND FITTING

The TB model we present uses the NRL-TB framewo
previously used for silicon.12 In this approach, the electroni
energy is defined as a sum over occupied eigenvalues tha
the solution to a generalized eigenvalue problem. The Ha
tonian ~H! and overlap~S! matrices are written in ansp3 or
sp3d5 basis centered around each atom. The off-diagonaH
andSmatrix elements are defined in the two-center appro
mation, i.e., they are dependent only on the relative positi
of the two interacting atoms. The diagonalH matrix elements
are written as a function of the local atomic density that
dependent on the distances from the atom to its neighb
This creates an explicit environment dependence in the d
onal matrix elements.

The functions describing the distance dependence of
off-diagonalSandH matrix elements, as well as the diagon
H matrix elements, are parametrized in the same way as
previous work on Si,12,14 using 41 parameters. These para
eters are used to fit thesp3 model to the total energies an
band structures of a number of bulk structures: diamo
~DIA !, simple cubic~sc!, body-centered cubic~bcc!, face-
centered cubic~fcc!, and the diamond structure with a di
tortion corresponding to the Raman phonon. To create
fitting data each structure is simulated at a range of ato
volumes, about 13.5–24.0 Å3 for the DIA structure and
about 15–21 Å3 for the other three structures. At each vo
ume the full-potential linearized augmented plane-wa
method ~FPLAPW! is used to compute energies and t
muffin-tin augmented plane-wave method~MTAPW! is used
to compute band structures.15–18

Generating our LAPW database we were presented w
the well-known problem that scalar relativistic calculatio
do not give an energy gap in Ge. The stateG28 switches with
the G258 and closes the gap completely at theG point. It has
been shown19 that a nonrelativistic calculation pushes t
G28 state upward and creates a small gap of 0.26 eV.
create a robust TB parametrization we use the band st
tures from the nonrelativistic calculations, but use the m
accurate scalar relativistic FPLAPW total-energy valu
Furthermore, conduction bands are then shifted rigidly
approximately match the band gap, which is underestima
by the local-density approximation~LDA ! to density-
functional theory~DFT!, to the experimental value.20,21 One
of the features of the NRL-TB method is that the TB mod
is fitted to first-principles band structures that contain all
the information needed to compute the total energy. Thi
done by shifting the first-principles eigenspectrum by an
propriately normalized quantity related to the densi
07521
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functional theory double-counting terms.11,22,23 The TB
model energy is fitted to the FPLAPW total energy, and
TB model eigenvalues are fitted to the shifted MTAPW ba
structure for the diamond lattice. Thesp3d5 model is fitted
using 69 parameters to the band structure of the diam
lattice at nine volumes ranging from 19.7 Å3 to 24.0 Å3.

To improve the band-structure fit of both thesp3 and
sp3d5 models some symmetry information is used at tw
high-symmetry points in the Brillouin zone~BZ! of the dia-
mond lattice, theG and L points. At these twok points the
matrix is block diagonalized into bands with appropria
symmetries and degeneracies, four eigenvalues at theG point
and five eigenvalues at theL point. This allows us to fit each
TB model band to the appropriate APW band, rather th
just assuming that the ordering of the TB bands is the sa
as the APW ordering. In fact, our experience is that for ma
otherwise reasonable TB model parameter sets this is no
case. The parameters resulting from the fit, in the same
tation as Ref. 12, are listed in Tables I and II.24

The CSC effects discussed in Sec. V are included thro
an approach quite similar to the work of Elstneret al.13 The
total energy is written as an eigenvalue sum plus an elec
static contribution, computed by assigning a charge to e
atomic site using a Mulliken population analysis. The resu
ing expression for the total energy is

ETB5(
i

N

f ~e i !e i1
1

2 (
ab

NA

gabDqaDqb . ~1!

As in Eq.~19! of Ref. 13,N is the number of basis element
e i is the eigenvalue of statei, f (e) is the Fermi function,NA
is the number of atoms,Dqa is the local charge at atoma,
andgab gives the Coulomb interaction between charges
atomsa and b. In our work the net charge~the Mulliken
charge minus the nuclear core charge! is assumed to be
spread out in a Gaussian charge-density profile in contra
the exponentially decaying charge density used in Ref.
Using the work of Shavitt,25 it can be shown that the width
of the charge distribution is determined by its onsite Co
lomb energyUa so that the normalized charge distribution

ra~r !5S Ua
2

2 D 3/2

expS 2
p

2
Ua

2r D . ~2!

This gives the matrixgab a different functional form as a
function of distance between atomsa andb than in Eq.~17!
of Ref. 13. After significant simplification of the expressio
tabulated by Shavitt,25 the resulting value forgab is

gab5(
b8

1

Rab8

1Uadab2(
b8

F 1

Rab8

2
1

Rab8

erfSAp

2 S Ua
2Ub

2

Ua
21Ub

2 D Rab8D G , ~3!

whereRab8 is the distance from atoma to the periodic im-
age of atomb, and the sums are carried out over all of t
periodic images of atomb except whereRab8 is zero. The
2-2
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TABLE I. Parameters for Gesp3 basis nonorthogonal tight-binding model.

Onsite parameters
l 1.1563
Orbital a ~Ry! b ~Ry! g ~Ry! x ~Ry!

s 20.1651 0.4169 294.7331 1317.1121
p 0.2001 8.8689 2132.9293 470.2755

Hamiltonian matrix parameters
Interaction a ~Ry! b ~Ry/a.u.! c ~Ry/a.u.2) g ~a.u.21/2)

Hsss 583.7307 2111.8091 222.9811 1.3251
Hsps 12.5370 25.6445 0.4230 0.8631
Hpps 219.7343 2.1006 1.4542 1.0073
Hppp 2004.8465 21054.6059 137.1944 1.3847

Overlap matrix parameters
Interaction t ~a.u.21) q ~a.u.22) r ~a.u.23) u ~a.u.21/2)

Ssss 20.7513 0.4634 20.0503 0.8028
Ssps 22.0975 1.5437 20.1781 0.9118
Spps 225.5413 14.0312 21.8615 1.0599
Sppp 21.2532 0.8381 20.0812 0.8325
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first sum is evaluated using an Ewald technique,26 while the
second sum is short ranged and can be evaluated by ex
summation.

The electrostatic term in the total energy leads to a mo
fication of the eigenvalue equation that depends on the e
tronic occupation. We solve the resulting self-consistent
genvalue problem using the modified Broyden method
Johnson.27 Since the structures used in the fit of the para
eters are all high-symmetry lattices, they will, by constru
tion, have no contribution from the CSC terms. Therefo
the addition of these terms will not affect the computed pr
erties of any of the structures used in the fit or the best-fit
of parameters.

III. BULK PROPERTIES

We begin by presenting the results of our TB models
properties of bulk phases of Ge. Some of these prope
were included in the fit, specifically the band structure a
the total energy of the DIA structure, and the energies of
sc, fcc, and bcc structures as well as the Raman pho
frequency. We also compute the energies and equilibr
volumes of a number of additional low-energy structures
Ge not included in the fit, as well as phonon frequencies
some high-symmetry points, and the elastic properties of
diamond structure. The high degree of symmetry of all
these structures means that none will be affected by the C
terms, and so these are not used in any of the calculat
discussed in this section.

The band structures computed with thesp3 andsp3d5 TB
models are plotted in Fig. 1, together with the scissor-shif
MTAPW band structure for comparison. The fit of thesp3

model for the valence band, which contributes to the to
energy, is very good. The fit for the conduction band, wh
qualitatively reasonable at least for the lowest two bands
less accurate. Instead of an indirect gap of 0.70 eV~the
07521
icit

i-
c-
i-
f
-
-
,
-
et

r
es
d
e
on
m
r
at
e
f
C

ns

d

l

is

scissor-shifted MTAPW value! from the valence-bandG
maximum to the conduction-bandL minimum and a direct
gap of 0.86 eV atG, the TB model has an indirect band ga
of 0.36 eV from theG point to theL point, while the direct
gap atG is 0.94 eV. The description of the conduction ba
in the sp3d5 model is better, particularly at theX and W
points, but also in the quantitative value of the band gap
this model, which was designed for band-structure rela
studies, there is an indirect gap fromG to L of 0.67 eV, in
very good agreement with the scissor-shifted MTAPW val
and a direct gap atG of 1.07 eV, a small but significan
overestimate. In addition, thesp3d5 model gives a good rep
resentation of the lowest three conduction bands fitt
Higher conduction bands cannot be treated by this mo
because a one-to-one correspondence with MTAPW res
would require an additionals basis orbital. The correspond
ing densities of states, including the decomposition intos, p,
andd contributions are plotted in Fig. 2. The total densiti
of states are in good agreement up to about 7 eV above
valence-band maximum, consistent with the good ba
structure fit. In addition, the decomposition intos, p, andd
contributions, which contains information about the eige
vectors that was not fitted, is in very good agreement in
valence band, although the contribution fromd orbitals in the
bottom of the conduction band is underestimated by the
model.

The total energies as a function of volume for the bu
structures used in the fit are plotted in Fig. 3 together w
the LAPW results to which they were fitted. It is clear fro
the plot that the total-energy fit for these structures is go
The equilibrium total energies and structures for a numbe
bulk phases were computed by minimizing the total ene
with respect to unit-cell size and shape, and with respec
the internal degrees of freedom. The energy, volume,
unit-cell structural parameters are listed in Table III. For t
phases that were in the fit~marked with an asterisk in the
table!, the agreement is quite good. For the most import
2-3
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TABLE II. Parameters for Gesp3d5 basis nonorthogonal tight-binding model.

Onsite parameters
l 1.1460
Orbital a ~Ry! b ~Ry! g ~Ry! x ~Ry!

s 20.1521 0.4024 298.4027 1216.2967
p 0.1771 8.4931 2135.2850 586.5797
d 0.7974 10.3844 191.6903 2499.8657

Hamiltonian matrix parameters
Interaction a ~Ry! b ~Ry/a.u.! c ~Ry/a.u.2) g ~a.u.21/2)

Hsss 732.7203 2116.8840 227.6353 1.3212
Hsps 12.9676 25.6016 0.3728 0.8719
Hpps 220.1730 1.8390 1.3691 1.0235
Hppp 2112.4087 21045.6335 134.1094 1.3597
Hsds 21.2543 20.0608 0.0358 0.6912
Hpds 21173.1549 128.9283 39.8097 1.3063
Hpdp 1.6742 0.2284 20.0246 0.7920
Hdds 21.3554 0.1931 0.0265 0.5823
Hddp 23.1321 20.1873 0.0261 0.6370
Hddd 22469.4178 242.4797 431.5692 1.4323

Overlap matrix parameters
Interaction t ~a.u.21) q ~a.u.22) r ~a.u.23) u ~a.u.21/2)

Ssss 20.0123 0.4949 20.0685 0.8978
Ssps 21.8880 1.5813 20.1682 0.8948
Spps 228.7778 13.8696 21.7678 1.0013
Sppp 20.9096 0.8928 20.0903 0.8349
Ssds 26.7339 0.3042 0.1161 1.0784
Spds 0.0393 0.0282 20.0037 0.4805
Spdp 0.6969 20.1259 0.0236 0.8570
Sdds 232.5704 2.3983 1.0705 1.0716
Sddp 8.3475 20.4413 20.9967 1.0940
Sddd 4.2025 0.6216 20.1319 1.0207
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m-
high-pressure phase, theb-Sn phase, as well as for th
simple hexagonal~sh! structure agreement is also good. F
the other phases where DFT calculations are availa
h-DIA, and bc8, agreement is reasonable, and in every c
the energy is higher than that for the experimental grou
state, the diamond structure. One important note is that t
are two very different values in the literature for the bo
centered 8 atom~bc8! structure minimum energy and relaxe
volume. Although the total-energy difference relative to t
diamond structure is overestimated by the TB model, i
much closer to the results of Mujica and Needs than to
work of Crainet al.28,29

The elastic constants of the diamond structure lattice w
calculated by applying appropriate deformations to the str
ture, relaxing with respect to the internal degrees of freed
and computing the relaxed energy. The energy as a func
of deformation was fitted to a quadratic expression to de
mine the elastic moduli,30 and the results are listed in Tab
IV. The elastic constants of the TB model are in reasona
agreement with DFT/LDA calculations, although the she
modulus c44 is significantly overestimated. The elast
moduli are moderately sensitive to the unit-cell volume,
can been seen by the softening of the lattice at the exp
07521
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mental volume of 45.08 Å3/atom. As a test of another aspe
of the elasticity of the material we computed the phon
spectrum along the high-symmetry directions of the vib
tional Brillouin zone of the diamond lattice using the froze
phonon method.31 The results, as well as first-principles ca
culations and experimental measurements, are plotted in
4. Agreement with experiment and with DFT calculations
again reasonable, comparable to the elastic constants.

IV. POINT DEFECTS

Point defects are one of the major sources of disorde
semiconductors, since they are thermodynamically favo
to exist with finite concentration at finite temperature. Th
mediate diffusion in the solid, since the stiffness of the p
fect diamond lattice makes it nearly impossible to diffu
without defects. Point defects can therefore have a signific
effect on dopant profiles. We have calculated the energ
and structures of several plausible point defects in Ge. Th
calculations include the vacancy, as well as three s
interstitial positions, the tetrahedral, hexagonal, and^110&
dumbbell interstitials. All the calculations were done in a 2
atom cubic supercell at the equilibrium lattice constant, sa
pling the Brillouin zone at theG point. The ideal defect
2-4
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NONORTHOGONAL TIGHT-BINDING MODEL FOR GERMANIUM PHYSICAL REVIEW B66, 075212 ~2002!
geometries were perturbed slightly by randomly displac
each atom, and relaxed using a conjugate-gradient algori
The ideal and relaxed formation energies of the defects
listed in Table V. Despite the relatively low symmetry of th
point defect geometries and the presence of inequivalen
oms, we found only negligible effects from the inclusion
CSC. Presumably the insensitivity of the calculation to C
is due to the low level of charge transfer even in the non
teracting electron calculation. Since no formation or rela
ation energy changed by more than 0.1 eV, we do not incl
the CSC terms in any of the results presented in this sec

For the most part the relaxed point defects keep the s
metry of the unrelaxed defects. The atoms neighboring
vacancy relax inward, reducing their distances from 3.95
to 3.48 Å. The tetrahedral interstitial makes two 2.42
bonds and two 2.50-Å bonds, only slightly deviating from
initial symmetry. The hexagonal interstitial maintains s
bonds of length 2.50 Å. Thê110& interstitial, analyzed in
detail in Ref. 32, has a structure similar to that of the DF
LDA simulation. The dumbbell atoms form 2.59-Å bond
with their noninterstitial neighbors, quite close to the DF
LDA result. The main difference is that the intradumbb
bond is 2.49 Å in the TB model result, significantly short
than the 2.60 Å found in the DFT/LDA work. The relative
high symmetry of three of the structures~the vacancy, tetra-
hedral and hexagonal interstitials! is quite different from the
results for the NRL-TB model for Si. This shows the em
gence of reduced directionality and increased tendenc
metal-like properties for Ge as compared with Si.

V. SURFACES

Semiconductor surfaces govern the deposition and gro
properties of these technologically important materials. T
geometries present at surfaces, characterized by lower c
dination and significant bond-angle distortions relative to
bulk, are quite different from the structures used to fit the
model. As a more stringent test of the transferability of t
model, we compute the surface energies and stresse
some low-energy reconstructions of the (111), (100), a

FIG. 1. Four valence and three conduction bands for the
mond lattice using the Gesp3 ~top panel! andsp3d5 ~bottom panel!
TB models ~solid lines! and scissor-shifted MT-APW first
principles calculation~symbols!. All energies are computed relativ
to the valence-band maximum.
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(110) surfaces of Ge. The results are summarized in Ta
VI. The effects of CSC on the surface properties, which
quite large in some cases, are discussed below.

There are only a few first-principles calculations of G
surface energies and stresses,33–37and it is difficult to obtain
reliable experimental data for these properties. For the ge
etries and reconstructions where first-principles calculati
have been published, the TB model is in reasonable ag
ment. Qualitative aspects, including the energy ordering
(100) vs (111), and at least the sign and magnitude of
surface stress for the (111) clean andT4 adatom covered
reconstructions, are all reproduced by the TB model. T
quantitative agreement is not as good, with the TB mo
underestimating the energy gain upon dimerization of
(100) surface, and overestimating the energy gain for bu
ling of the dimers. While no specific comparison has be
made for Ge, surface properties, particularly surface stres
have been a problem for empirical interatomic potentials
other semiconductors such as silicon.38 It is reassuring that
our TB model, despite having been fitted to a rather differ
set of geometries, is transferable to the low coordination
large bond distortions present at the surface.

While almost all of the surface energies and stresses
computed are of comparable magnitude to DFT/LDA calc
lations and to each other, the (110) surface stress stands
In addition, the structure of the (110) surface is quite u
usual: the bonds connecting the surface atoms to the sub
face layer are 2.74 Å long, as compared with a bond len
of 2.43 Å in the bulk. Such long bonds are not seen in a
other surface structure, nor have they been seen in any
principles or experimental study of semiconductor surfa
that we are aware of. One likely reason for the behavior
the TB model is the neglect of charge-charge interactio
Since the surface atoms are in a very different environm
that even the first subsurface layer, significant charge tran
to or from surface states could dramatically change the in
atomic bonding. The changes in the surface energ
stresses, and structures due to the inclusion of CSC term
the calculation allow us to gauge the extent of such char
transfer effects.

A comparison of the TB and TB-CSC values in Table
shows that the importance of charge-transfer effects va
greatly between the different properties and structures.

-

FIG. 2. Electronic densities of state for the diamond lattic
Dashed lines are TB model results, and solid lines are the scis
shifted nonrelativistic MTAPW results consistent with the fittin
database.
2-5
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BERNSTEIN, MEHL, AND PAPACONSTANTOPOULOS PHYSICAL REVIEW B66, 075212 ~2002!
(111) surface is almost entirely unaffected, as is energy
stress of the 231 buckled dimer reconstruction of the (100
surface. However, the structure of the surface dimer is
slightly better agreement with DFT/LDA results than t
conventional TB results. The (100) 231 flat dimer recon-
struction energy is in much better agreement with DFT/LD
and the surface stress changes significantly, although
comparison value is available for the latter quantity. T
most significant changes take place on the (110) surf
where the energy goes up by 15% and the stress drops b
order of magnitude. The bonds connecting the surface at
to the subsurface layers are now only 2.41 Å long, sligh
shorter than the bulk bond length. While we are not aware
any DFT/LDA or experimental data to compare to, the s
face stress and bond lengths from the CSC calculation
much more plausible than the non-CSC results.

VI. CLUSTERS

One interesting class of Ge structures that is most dif
ent from the fitting regime of the TB model is small cluste

FIG. 3. Total energy as a function of volume for bulk lattic
structures included in the fit. Lines are TB model results, and s
bols are LAPW results from the fitting database.
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Up to a few tens of atoms the majority of the material is
the surface, with no bulk-like region at all. To test the tran
ferability of thesp3 TB model we used it to search for low
energy structures of Ge clusters, starting from the two at
dimer to a 10 atom cluster. Since there are essentially
symmetry constraints on cluster geometries, an exhaus
search for the ground-state structure for clusters beyon
few atoms is quite involved. Since we are mainly interes
in benchmarking the performance of the TB model, we o
tested structures that have previously been proposed fo
clusters. We find that for up to six atoms the TB mod
makes significant errors, indicating that this size regime
outside of the range of validity of the present parametri
tion. In particular, the range of local atomic densities, whi
directly affects the on-site matrix elements, is significan
lower than for the bulk geometries in the fitting databa
This could probably be remedied by a reparametrization w
a fitting database that concentrated on cluster properties.
clusters of seven to ten atoms, the results of the model

-

TABLE IV. Elastic constants~in GPa! for the diamond structure
computed with the TB model at the equilibrium volumeVeq, the
TB model at the experimental volumeVexp, plane-wave pseudopo
tential DFT/LDA calculations~Ref. 59! our LAPW DFT/LDA cal-
culations atVeq , and experiment~Refs. 60,61!.

TB DFT/LDA Exp.
Veq Vexp PP LAPWVeq

B 66.6 57.7 72 77.9 76.8
c112c12 115.7 112.2 85 75.3 82.1
c11 143.7 132.5 130 128.1 131.5
c12 28.0 20.3 45 52.8 49.4
c44

0 138.6 131.8 77
c44 111.9 107.2 63 68.4
e

he

fitting
TABLE III. Equilibrium total energies~eV/atom relative to the diamond structure energy! and unit-cell
volumes~in units of the diamond structure equilibrium volume! andc/a ratios for some bulk phases of G
computed with the TB model, compared with our LAPW DFT/LDA calculations (h-DIA, sc, sh, fcc, bcc! and
literature values computed using DFT/LDA~two significantly different values have been published for t
bc8 structure, as discussed in the text!. For the body-centered-tetragonal 5-atom~bct-5! and the hexagonal-
close-packed~hcp! structures no first-principles calculations were available. Structures used in the
database are labeled with an asterisk.

TB DFT/LDA
Structure E V c/a E V c/a

h-DIA 0.003 0.993 1.64 0.017 0.994 1.65
sc* 0.175 0.836 0.213 0.840
sh 0.189 0.834 0.95 0.168 0.805 0.94
b-Sna 0.216 0.822 0.535 0.182 0.822 0.547
fcc* 0.224 0.809 0.260 0.812
bc8b 0.231 0.916 0.125,0.033 0.915,0.881
bct-5 0.279 0.912 1.81
bcc* 0.283 0.790 0.302 0.814
hcp 0.306 0.928 0.794

aLDA from Ref. 58.
bLDA from Refs. 28 and 29.
2-6
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reasonable. We list the tested structures, as well as previo
published results with other TB models3,5,6 and first-
principles results,3,39 in Table VII.

The Ge7 cluster is stable in the previously presentedD5h
symmetry pentagonal bipyramid structure. There is less c
sensus on the ground-state structure of the Ge8 cluster. We
tested the edge capped pentagonal bipyramid@labeled Cs
~1!#,3,39 the distorted octahedron face capped on two adjac
faces withC2 symmetry,3,39 the face capped pentagonal b
pyramid@labeledCs ~2!#,3,5,6and theC2h symmetry distorted
octahedron capped on two diametrically opposed faces.39 We
obtain the edge capped bipyramid as the ground state, es
tially degenerate with the octahedron capped on adja
faces. This result is consistent with the TB model of Zh
et al.6 and the DFT/LDA work of Luet al.,39 although it
conflicts with the AIMPRO first-principles code results o
Sitch et al.3

A large number of structures have been proposed for
Ge9 cluster, most in aC2v symmetry. They comprise th
distorted tricapped octahedron@C2v ~1!#,3,39 the distorted tri-
capped trigonal prism@C2v ~2!#,3 the capped tetragonal ant
prism @C2v ~3!#, the pentagonal bipyramid capped on ad
cent faces (Cs),

5,6 and the capped distorted tetragonal pris
@C2v ~4!#.6,39 Since first-principles calculations were ava
able for only a few of these structures, we used theABINIT

plane-wave pseudopotential DFT/LDA code to compare
equal footing these five structures. We used a Troull
Martins nonlocal pseudopotential, a plane-wave energy
off of 20 Ry, a cubic periodic supercell 11.2 Å on a side, a
sampled the BZ at a singlek point with reciprocal-lattice
coordinates of14

1
4

1
4 . We get two nearly degenerate groun

state structures, the distorted tricapped octahedron and

FIG. 4. Phonon frequencies for Ge computed with thesp3 TB
model~solid symbols! compared with DFT/LDA results~open sym-
bols! from Ref. 63 and experimental results at 80 K from Ref.
~lines!.

TABLE V. Point defect formation energies~unrelaxedEf
0 and

relaxedEf) computed with the TB model, and DFT/LDA calcula
tions from Refs. 32 and 62.

Ef
0 Ef DFT Ef

V 4.6 3.6 1.9
I t 3.1 2.5 3.2
I h 5.6 4.4 2.9
I ^110& 4.3 3.3 2.3
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bicapped pentagonal bipyramid. While this is not in agre
ment with the DFT/LDA calculations, it is an error comp
rable to the work of Zhaoet al. who specifically tailor their
TB model for cluster properties.

For the Ge10 cluster we considered three structures, t
tetracapped trigonal prism with symmetryC3v ,5,6,39 the bi-
capped square antiprism withD4d symmetry,3,6 and the tet-
racapped octahedron withTd symmetry.3 We get nearly de-
generate energies for the tetracapped trigonal prism and
bicapped square antiprism structures, with the tetracap
octahedron slightly higher in energy. This is a differe
ground state than either of the two predicted by the fir
principles calculations, but quite similar to the TB model
Sitch et al.

Overall, the results of oursp3 TB model for clusters are
reasonable, although not perfect. It is inaccurate below se
atoms, but in the seven to ten atom range it is as good
other TB parametrizations available in the literature. This
despite the use of only bulk structures in our fitting databa
For larger clusters, which have a more bulklike structure,
expect that our TB model will be even more accurate.
addition, previous experience with the fitting of paramet
for the NRL-TB method suggests that refitting with a da

TABLE VI. Surface energies~in eV/131 cell! and geometries
for the Ge TB model, the Ge TB model with charge self-consiste
~CSC!, and DFT/LDA calculations. DFT calculations for (100) su
face from Refs. 33,35–37, and (111) surface from Ref. 34. For
(100) surface, thex direction is parallel to the dimer bond, and fo
the (110) surface thex direction is normal to the surface bon
zigzag rows.

TB TB-CSC DFT/LDA

(100)
E(131) 1.93 2.31
sxx(131) 2.65 20.03
syy(131) 2.65 20.03
E(231) flat–E(131) 20.37 20.69 20.45 to20.68
sxx(231) flat 0.39 0.42
syy(231) flat 20.60 20.27
E(231) buckled2flat 20.31 20.30 20.12 to20.17
sxx(231) buckled 0.76 0.81
syy(231) buckled 20.23 20.23
231 buckledr ~Å! 2.60 2.56 2.48–2.54
231 buckledu (°) 19.5 18.44 13–19
(111)
E(131) 1.51 1.55 1.40
s i i (131) 20.35 20.32 20.73
E(232) T4 1.11 1.17 1.20
s i i (232) T4 0.64 0.68 1.43
E(232) H3 1.20 1.26
s i i (232) H3 0.34 0.39
E(232) B2 1.34 1.39
(110)
E(131) 2.73 3.18
sxx(131) 27.11 0.19
syy(131) 21.93 21.03
2-7
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TABLE VII. Symmetries and cohesive energies~in eV/atom! of Ge clusters with seven to ten atom
computed by our TB model~NRL-TB!, three other TB models~the work of Menon from Ref. 5, labelled
MTB, the work of Zhaoet al. from Ref. 6, labelled ZTB, and the density-functional TB work from Ref.
labelled DFTB! and three first-principles calculations~AIMPRO, DFT/LDA!. Negative numbers indicate co
hesive energy relative to lowest energy structure found by the same method.

Sym. NRL-TBa MTBb ZTBc AIMPROd DFTBe LDAf LDAg

Ge7 D5h 2.91 3.19 3.09 20.000 20.000
Ge8 Cs ~1! 2.87 3.17 3.05 20.010 20.003 3.685
Ge8 C2 2.87 20.036 20.000 20.003
Ge8 Cs ~2! 2.82 20.000 20.056 20.004
Ge8 C2h 2.73 20.08 20.004
Ge9 C2v ~1! 3.03 20.156 20.167 20.009 20.000
Ge9 C2v ~2! 2.84 20.000 20.000 20.058
Ge9 C2v ~3! 2.79 20.091
Ge9 Cs 3.03 3.25 3.12 20.000
Ge9 C2v ~4! 2.92 20.06 3.791 20.000
Ge10 C3v 3.08 3.32 3.17 10.000
Ge10 D4d 3.09 20.16 20.030 20.000
Ge10 Td 2.95 20.000 20.166

aPresent work. eFrom Ref. 3.
bFrom Ref. 5. fFrom Ref. 39.
cFrom Ref. 6. gPresent work.
dFrom Ref. 3.
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base that emphasizes cluster properties could yield impro
accuracy for clusters.40–42

VII. FINITE TEMPERATURE PROPERTIES

All of the properties discussed so far are related to en
getics and structures at zero temperature, or to infinitesi
displacement from these geometries~e.g., the phonons an
elastic constants!. Such properties can be computed using
the most a few tens of force evaluations of a unit cell
about two hundred atoms. The computational efficiency
the TB model allows us to exceed the limitations of stand
DFT by easily performing molecular-dynamics~MD! simu-
lations that provide us with information about finite tempe
ture properties.43 As an example, we compute the mea
squared displacements of the atoms and the coefficien
thermal expansion for the diamond lattice as a function
applied temperature.

We perform a series of MD simulations using a diamo
structure 686 atom unit cell, a 73737 supercell of the 2
atom fcc primitive unit cell, at temperatures ranging fro
100 K to 2000 K, using 2-fs time steps. To set the tempe
ture we initialize the velocities of the atoms to values
lected randomly from a Boltzmann distribution consiste
with twice the desired temperature, and perform a cons
energy constant volume simulation. After about 200 tim
steps for equilibration, the temperature stabilizes at half
initial value ~due to the equipartition theorem half of th
initial energy, which was all kinetic, is converted into pote
tial energy!. We then track the atomic trajectories for 180
time steps, and compute the mean-squared deviation o
atomic position averaging over all atoms and time steps. T
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mean-squared displacement is plotted in Fig. 5, together w
experimental data derived from Debye-Waller fact
measurement.44 The TB model results have a slope that
about 35% smaller than experiment. At higher temperat
the anharmonicity of the potential allows for larger mea
squared displacements than a simple linear extrapola
would predict.

The nearly linear dependence of the mean-squared
placement on temperature up to 2000 K indicates that eve
this high temperature, the solid has not melted. While t
temperature is significantly above the experimental melt
point, this amount of overheating is not unusual for a sim
lation of a perfect periodic solid.45 Nevertheless, the mean
squared displacement can be related to the melting p

FIG. 5. Mean-squared displacement during MD simulation a
function of temperature. Solid symbols are MD simulation using
TB model, the line is a fit through the low temperature~up to 600
K! data, and open symbols are experimental data from Deb
Waller factor measurements~Ref. 44!. The horizontal line indicates
a mean-squared displacement of 0.13 times the bond len
squared.
2-8
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NONORTHOGONAL TIGHT-BINDING MODEL FOR GERMANIUM PHYSICAL REVIEW B66, 075212 ~2002!
through the Lindemann criterion, which states that the so
will melt when the root-mean-squared displacement is
proximately 13% of the bond length.46 This point is indicated
by a horizontal line in Fig. 5. This value corresponds to
temperature of about 1560 K, somewhat above the exp
mental melting point of 1210 K.47 In contrast, extrapolating a
linear fit through the low-temperature results predicts
melting point at about 1990 K. This discrepancy highligh
the need to include the full anharmonicity of the interatom
interactions when considering finite temperature properti

Another finite temperature property that can be compu
easily using a molecular-dynamics simulation based on
forces is the thermal-expansion coefficient. We have co
puted this property using the same trajectories from
simulations of the atomic vibrations discussed above. Dur
each trajectory we compute the mean pressure in the sa
by averaging the values of the pressure~including both the
kinetic and potential components48,49! sampled every 100
time steps~after the initial 100 time steps of equilibration!.
From the tabulated values of pressure as a function of t
perature at constant volume we compute the equilibrium v
ume at each temperature. In this calculation we assume
the deviation from the equilibrium volume is small, so th
the sample is in the harmonic regime. With this approxim
tion, the difference between the simulation volume and
finite temperature equilibrium volume is

DV~T!'V0

P~T!

B~T!
,

whereV0 is the zero-temperature volume,P(T) is the pres-
sure at temperatureT, andB is the bulk modulus. Since th
volume differences are small and the volume scales as
cube of the length, the corresponding linear thermal exp
sion is

DL~T!

L0
'

1

3

DV~T!

V0
.

While we have calculated the bulk modulus atT50, to
compute the thermal expansion we also need at least a
timate of the variation of the bulk modulus withT. To deter-
mine this variation we computed the pressure at 1000 K
system with a 3.1% lower volume. A pressure difference
tween the two volumes of 1.93 GPa indicates that the b

FIG. 6. Linear thermal expansion during MD simulation as
function of temperature. Solid symbols are MD simulation using
TB model, and open symbols are experimental data~Ref. 50!.
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modulus at this pressure is 62.3 GPa, 6.5% lower than
T50 value of 66.6 GPa. Using the values ofB at 0 K and
1000 K we assume a linear variation ofB with T. With this
approximation forB(T) we compute the thermal expansio
plotted in Fig. 6, along with experimental data.50 The transi-
tion in the experimental results from a linearT dependence a
high T to a higher-order dependence at lowT is caused by
the increasing importance of the quantum-mechanical na
of phonons at lowT.51 Since MD describes the nuclei a
classical point masses, a comparison with experiment is o
meaningful at temperatures above the Debye tempera
QD5360 K.52 In this range the agreement between t
slopes of the experimental and simulated curves is v
good. Using a linear least-squares fit, the slope of the exp
mental data is 7.1531024%/K, while the slope of the simu-
lation results is 7.3431024%/K, a deviation of only 3%.

VIII. TWIST GRAIN BOUNDARY PROPERTIES

The most technologically important use for semicondu
tor materials is in the production of electronic devices, wh
material defects can have significant effects. While point
fects ~vacancies and interstitials! and line defects~disloca-
tions! have been studied extensively using atomistic simu
tions with quantum-mechanical force calculations, gra
boundaries~GB!, a type of planar defect, have not. The
have been a few simulations using both first-principles a
tight-binding methods, but these have all been limited by
large system sizes and structural complexity inherent to
GB geometry. A number of studies of a particular high an
Ge twist GB have been performed using DFT/LDA,53–56but
because of the computational demands of the method
were limited to a coarse exploration of the configurati
space. In their examination of theS55(001) twist GB their
main conclusions were that a number of low-energy str
tures exist for the boundary, all of which include some ato
with coordination other than four, and that these brok
bonds create defect states deep in the gap. In contra
related study of aS55(310) tilt GB in silicon using a semi-
empirical TB model found only shallow states in the g
near the valence- and conduction-band edges.57 In that TB
study the absence of states deep in the gap, which wa
tributed to the perfect fourfold coordination of the atoms
the boundary, was used to support the idea that GB elect
activity is not intrinsic, but is instead related to GB defects
impurities.

In this section we present our study of the same h
angle twist GB previously studied in the DFT/LDA wor
mentioned above, using a combination of the two TB mod
presented earlier. We use thesp3 model, optimized for total-
energy calculations, to systematically explore configurat
space and compute relaxed geometries and energies. We
use thesp3d5 model, optimized for band-structure prope
ties, to examine the band structure of the relaxed GB str
tures. We use the same basic geometry used in Ref. 56,
an in-plane unit cell determined by the coincident site latt
~CSL! unit cell, a A53A5 supercell of the fundamenta
(100) surface 131 unit cell. The calculation is carried out i
a 70 atom supercell consisting of two grains, one with

e

2-9
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BERNSTEIN, MEHL, AND PAPACONSTANTOPOULOS PHYSICAL REVIEW B66, 075212 ~2002!
layers and one with eight layers, with five atoms in ea
layer, with two special integration points in the Brilloui
zone.

We sample the configuration space by generating a la
number of initial GB geometries in the displacement s
complete~DSC! unit cell. Since the TB approach is not a
computationally demanding as DFT/LDA, we generate a
310 mesh in the DSC cell, a much denser sampling than
434 sampling used in Ref. 55. Each configuration is th
relaxed with respect to atomic positions and unit-cell s
normal to the interface in a four step process. We begin
generating a GB with the correct relative angle and in-pla
displacement between the two grains, and some excess
layer spacing at the GB relative to the bulk value. This
needed to prevent atoms from coming closer together t
the distances sampled in the fit of the TB model, a situat
that would correspond to unphysically high energies in a
case. The initial GB is relaxed by applying uniaxial press
to the sample normal to the GB, and keeping each five a
layer rigid but allowing it to move perpendicular to the G
Further relaxation is achieved at zero applied pressure
constraints on two bilayers in the middle of each grain t
allows them to move rigidly normal to the interface. In th
final relaxation step the central bilayers are constrained
translate rigidly both normal to and in plane.

The qualitative results are similar to the DFT/LDA calc
lations. The GB energies range from 6.44 to 8.01 eV/C
unit cell. These energies are comparable to the DFT/L
results where the GB energies range from 5.79 to 7.04
CSL unit cell. The denser mesh of initial configuration in t
DSC unit cell generates a larger number of distinct mini
than the seven considered by Tarnowet al., fifteen in all. The

FIG. 7. Visualization of the lowest energy grain-boundary~GB!
structure, showing features such as surface dimers but no coor
tion defects despite the low symmetry of the GB. View is along
(001) direction, atom color indicates the two grains, and size in
cates distance along viewing direction. The square indicates
CSL unit cell.
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lowest energy configuration, at (0.1,0.0) of the CSL latt
cell, is shown in Fig. 7 The same geometrical features s
in the DFT simulations, primarily free-surface-like intralay
dimers, dominate the relaxed GB structures. While this is
the same initial translation that led to the lowest ene
structure in the work of Tarnowet al., the difference is un-
likely to be significant. We use a slightly different relaxatio
procedure, and the complex topology of the potential-ene
surface means that even tiny differences in computed fo
can lead the relaxation algorithm to a different minimum.

From the trough in the pair-correlation function we c
define a distance cutoff for nearest neighbors at about 3.
Using this cutoff we have characterized the coordination s
tistics of each of the fifteen local minima. In the lowest e
ergy configuration, as well as three other configurations w
significantly higher energies~0.86 to 1.13 eV/CSL unit cell!,
all atoms are fourfold coordinated. The existence of suc
structure with no coordination defects is unexpected con
ering the low symmetry of the GB structure. The other co
figurations range from two to four miscoordinated atom
mainly threefold, but a few fivefold as well. It is interestin
that the absence of coordination defects is not well correla
with a low GB energy.

One of the important properties of GB’s, the nature of t
electronic states associated with them, has been attribute
the presence or absence of coordination defects in the s
ture. For example, the TB simulation of theS55(310) tilt
GB with perfectly fourfold coordinated atoms shows on
shallow states,57 while the DFT/LDA simulation of theS
55(100) twist GB has coordination defects and de
states.55 To examine the correlation between structure a
gap states, we have calculated the electronic density of s
~DOS! using a BZ sampling of 32 specialk points ~a 434
32 mesh in the full BZ! and Gaussian broadening of 0.0
eV. We find that all of the relaxed GB structures have s
nificant densities of states deep in the gap. In Fig. 8 we p
the DOS of the lowest energy GB structure, where all ato
are fourfold coordinated. The gap, which extends from ab
0.0 to 0.65 eV, is clearly seen in the bulk diamond latti
DOS. In the GB sample there are states throughout that
ergy range. This indicates that even with a perfectly co
nected bond network defect states can exist deep in the

a-
e
i-
he

FIG. 8. Electronic density of states for the lowest energy G
structure~dashed line!, and bulk diamond structure Ge calculate
using thesp3d5 TB model. Energies are measured relative to t
bulk conduction-band maximum.
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IX. SUMMARY

We have developed two TB model parametrizations
germanium using the NRL-TB approach, one optimized
total-energy calculations and one for electronic structure
culations. The total-energy optimized model, which was
ted to energies and band structures of a few high-symm
lattice structures, is transferable to a wide range of geo
etries. It has been tested for the energetics of other b
structures, elastic constants and phonons, point defects
surface properties, and in nearly every case gives very g
agreement with first-principles calculations. These calcu
tions include some properties that have not been simul
before using a quantum-mechanical method, including
face stresses for several (100) and (111) reconstructi
and the energies of theH3 andB2 232 adatom reconstruc
tion of the (111) surface and the unreconstructed (110)
face. We have found that the addition of charge se
consistency terms to the Hamiltonian make negligi
difference to the results for the bulk and point defect pro
erties, but can strongly affect surface properties. In part
lar, the (110) surface geometry and stress are comple
changed by the addition of charge self-consistency.

The TB model shows good transferability to intermedia
size clusters, where the geometries are very different fr
the fitting database and none of the atoms are in bulk
environments. While structures and energies of clusters w
fewer than seven atoms are not predicted accurately, betw
seven and ten atoms oursp3 TB model shows very good
agreement with other published calculations. These incl
both first-principles simulations, where available, and ot
TB models including some that were explicitly designed
reproduce cluster energetics.

Taking advantage of the efficiency of the TB approa
-
n-

M

lid
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we have performed molecular-dynamics simulations us
TB forces to compute some finite temperature properties
would be impractical to compute with first-principles a
proaches. We find good agreement with experiment for
atomic mean-squared displacement as a function of temp
ture, as well as the melting point estimated from this quan
using the Lindemann criterion. We also get a therm
expansion coefficient in good agreement with experimen

Finally, we take advantage of the transferability of the T
models to a wide range of geometries combined with th
ability to give electronic structure information to study
high angle twist grain boundary. We get qualitative agre
ment with previous DFT/LDA calculations in the energeti
of the grain-boundary structure, and we find a fully fourfo
coordinated minimum-energy structure. For all of the sta
structures we find electronic states in midgap, which wo
lead to electrical activity for this type of boundary. Th
stands in contrast to previous TB modeling of high an
twist boundaries, where the fully fourfold coordinated stru
ture created only shallow states near the band edges.
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